Popular on s4story
- Libraries for Kids International Announces 2026 Board of Directors - 178
- For Valentine's Day: Treat yourself (and maybe even your sweetheart) to some Not Exactly Love Poems - 102
- Rande Vick Introduces Radical Value, Challenging How Brands Measure Long-Term Value
- Independent Comic Publisher Launches Community-Driven Anthology in South Carolina
- New Year, New Home: Begin 2026 at Heritage at South Brunswick
- Michael Judkins Releases New Poetry Book, Deeper Than You Think
- Power Business Solutions Announces Joint Venture with EIG Global Trust to Deliver Data Center Financial Solutions
- Narcissist Apocalypse Marks 7 Years as a Leading Narcissistic Abuse Podcast
- Lisa Mauretti Launches Peace of Mind Travel Coaching to Guide Fearful Travelers to Discover the World with Confidence
- Scoop Social Co. Partners with Fairmont Hotels & Resorts to Elevate Summer Guest Experiences with Italian Inspired Gelato & Beverage Carts
The Quasar Dipole Phenomenon is likely just a complex systematics artifact
S For Story/10684676
Study Identifies Systematic Instabilities in Quasar Dipole Measurements
HONOLULU - s4story -- New Analysis Challenges "Lopsided Universe" Claims: Study Identifies Systematic Instabilities in Quasar Dipole Measurements
HONOLULU, HI — Independent researcher Aiden Smith has announced the release of a comprehensive new study, "Time-domain instability and selection systematics in the CatWISE quasar dipole," which identifies significant observational systematic errors in recent measurements of the cosmic dipole. The study suggests that an apparent "lopsidedness" in the universe may actually be the result of time-domain instabilities and selection biases in infrared satellite data rather than a challenge to the fundamental principles of cosmology.
For decades, the standard model of cosmology has assumed the universe is isotropic—the same in all directions—when viewed on the largest scales. However, recent high-profile studies utilizing the CatWISE quasar sample reported a dipole amplitude in number counts that significantly exceeded theoretical expectations, leading to claims that the universe might have a preferred direction.
More on S For Story
Smith's new research, currently available as a public preprint and data release, utilizes the unWISE time-domain catalogue to perform an epoch-sliced analysis spanning 2010 to 2020. The findings reveal that the measured dipole amplitude varies strongly over time. Because a true cosmological or kinematic dipole must remain time-invariant, this instability indicates that the signal is likely imprinted by time-dependent selection or coverage effects in the WISE satellite's scanning pattern.
Key Findings of the Study:
"The results motivate significant caution regarding cosmological interpretations of the CatWISE dipole," says Smith. "Without an end-to-end completeness model that is validated in the time domain, we risk mistaking satellite scanning patterns for new laws of physics".
More on S For Story
The full manuscript, LaTeX source, and reproducibility materials have been archived on Zenodo to ensure complete transparency and allow for independent verification by the scientific community. The work is also available on a website Smith set up called "QuasarDipolePhenomenon.org", where he also hosts other upcoming potentially groundbreaking studies including "A Calibrated Dark-Siren Tension with the General-Relativity Distance-Redshift Relation in GWTC-3"
About the Researcher: Aiden Smith is an independent researcher focused on statistical methods in cosmology and large-scale structure. This study was conducted using publicly available data from the CatWISE2020 and unWISE Time-Domain catalogues.
Data and Reproducibility: Manuscript DOI: 10.5281/zenodo.18530376 Supplementary Assets DOI: 10.5281/zenodo.18489200
HONOLULU, HI — Independent researcher Aiden Smith has announced the release of a comprehensive new study, "Time-domain instability and selection systematics in the CatWISE quasar dipole," which identifies significant observational systematic errors in recent measurements of the cosmic dipole. The study suggests that an apparent "lopsidedness" in the universe may actually be the result of time-domain instabilities and selection biases in infrared satellite data rather than a challenge to the fundamental principles of cosmology.
For decades, the standard model of cosmology has assumed the universe is isotropic—the same in all directions—when viewed on the largest scales. However, recent high-profile studies utilizing the CatWISE quasar sample reported a dipole amplitude in number counts that significantly exceeded theoretical expectations, leading to claims that the universe might have a preferred direction.
More on S For Story
- TL International Group Becomes First Global Operator to Fully Migrate to Pulsant's Dedicated Car Rental Cloud
- Diveroli Investment Group Files 13D in PetMed Express, Highlights Strategic Value, Asset Floor, and Multiple Takeover Pathways
- Deep Learning Robotics (DLRob) Announces Pre-Launch of Zero-Teach and Teach-by-Demonstration Technology for Kitting Applications
- Soil Testing Matters for Healthy, Vibrant Rose Blooms
- The Rise of Comprehensive Home Water Treatment Systems
Smith's new research, currently available as a public preprint and data release, utilizes the unWISE time-domain catalogue to perform an epoch-sliced analysis spanning 2010 to 2020. The findings reveal that the measured dipole amplitude varies strongly over time. Because a true cosmological or kinematic dipole must remain time-invariant, this instability indicates that the signal is likely imprinted by time-dependent selection or coverage effects in the WISE satellite's scanning pattern.
Key Findings of the Study:
- Axis Instability: While the dipole amplitude appears stable, the directional axis "drifts" significantly as the analysis includes fainter objects, moving from near-alignment with the Cosmic Microwave Background (CMB) to a 34° separation.
- CMB-Perpendicular Growth: This drift is driven by an increasing component perpendicular to the CMB, suggesting interference from data-completeness issues.
- Systematic Sensitivity: Injection and recovery tests demonstrate that even modest modulations in survey depth can bias both the recovered amplitude and the axis of the dipole.
- Statistical Outlier: A correlated-cut Monte Carlo analysis shows that the observed drift in the data lies in the < 1 per cent tail, making it highly unlikely to be a result of random fluctuations.
"The results motivate significant caution regarding cosmological interpretations of the CatWISE dipole," says Smith. "Without an end-to-end completeness model that is validated in the time domain, we risk mistaking satellite scanning patterns for new laws of physics".
More on S For Story
- Yazaki Innovations to Introduce First-Ever Prefabricated Home Wiring System to U.S. Residential Market in 2026
- The First Romans By Lucas C. Wagner Brings the Grit, Glory, and Guts of the Early Republic to Life
- Bisnar Chase Named 2026 Law Firm of the Year by Best Lawyers
- Ace Industries Welcomes Jack Polish as Controller
- Senseeker Machining Company Acquires Axis Machine to Establish Machining Capability for Improved Supply Chain Control and Shorter Delivery Times
The full manuscript, LaTeX source, and reproducibility materials have been archived on Zenodo to ensure complete transparency and allow for independent verification by the scientific community. The work is also available on a website Smith set up called "QuasarDipolePhenomenon.org", where he also hosts other upcoming potentially groundbreaking studies including "A Calibrated Dark-Siren Tension with the General-Relativity Distance-Redshift Relation in GWTC-3"
About the Researcher: Aiden Smith is an independent researcher focused on statistical methods in cosmology and large-scale structure. This study was conducted using publicly available data from the CatWISE2020 and unWISE Time-Domain catalogues.
Data and Reproducibility: Manuscript DOI: 10.5281/zenodo.18530376 Supplementary Assets DOI: 10.5281/zenodo.18489200
Source: Aiden Blake Smith
0 Comments
Latest on S For Story
- 20/20 Institute Launches Updated Vision Correction Procedures Page for Denver & Colorado Springs
- OneVizion Announces Next Phase of Growth as Brad Kitchens Joins Board of Directors
- New Children's Picture Book "Diwa of Mount Luntian" Focuses on Calm, Culture, and Connection for Today's Families
- Actor, Spokesperson Rio Rocket Featured in "Switch to AT&T" Campaign Showing How Customers Can BYOD and Keep Their Number
- The World's No.1 Superstar® Brings Disco Fever Back With New Global Single and Video "Disco Dancing"
- Boston Industrial Solutions' Natron® 512N Series UV LED Ink Achieves BPA Certification, Advancing Safe and Sustainable Digital Printing
- "Rainforest to Rainbow" Builds Momentum as Readers Connect With Richard the Parrot
- Joan Nissen promoted to Century Fasteners Corp. – General Manager, Aerospace & Government Sales
- Northwest Modern Fabrication Expands Manufacturing Capacity With 4,800 Sq. Ft. Addition
- People & Stories/Gente y Cuentos to Host Award-Winning Novelist Susan Choi for Spring Literary Benefit Event
- NRE-HEALTH Radio Launches With a New Approach to Health Broadcasting
- From Coffee to Commutes: sMiles App Now Pays Bitcoin for Every Gift Card Purchase
- Finland's Health Authority Launches '2-4-2' Gambling Risk Limits Ahead of Expected Advertising Boom
- [New Book] "How Forest Park Was Made" Available Now!
- Dr. Billy B. Laun II Addresses Over 120 Dental Professionals at Annual Dental Meeting
- CCHR: Taxpayer Billions Wasted on Mental Health Research as Outcomes Deteriorate
- Digital Efficiency Consulting Group (DECG) Officially Launches
- New Book Explores the Rich History of Hiking
- Work 365 Delivers Purpose-Built Revenue Operations for Microsoft Cloud for US Government
- Meridianvale Unveils QarvioFin Public Beta: The First 'Glass Box' AI Operating System for Autonomous Finance
